1st Page

Journal of Animal Science Abstract - Animal Genetics

Detection of QTL controlling metabolism, meat quality, and liver quality traits of the overfed interspecific hybrid mule duck1


This article in JAS

  1. Vol. 91 No. 2, p. 588-604
    Received: Apr 24, 2012
    Accepted: Oct 26, 2012
    Published: December 2, 2014

    2 Corresponding author(s):

  1. M. Kileh-Wais*,
  2. J. M. Elsen*,
  3. A. Vignal,
  4. K. Feves,
  5. F. Vignoles,
  6. X. Fernandez,
  7. H. Manse,
  8. S. Davail§,
  9. J. M. André§,
  10. D. Bastianelli#,
  11. L. Bonnal#,
  12. O. Filangi,
  13. E. Baéza,
  14. D. Guéméné¶**,
  15. C. Genêt††,
  16. M. D. Bernadet‡‡,
  17. F. Dubos‡‡ and
  18. C. Marie-Etancelin 2
  1. Institut National de la Recherche Agronomique, SAGA Station d’Amélioration Génétique des Animaux, UR631, 31 326 Castanet Tolosan, France
    Institut National de la Recherche Agronomique, LGC Laboratoire de Génétique Cellulaire, UR444, 31 326 Castanet Tolosan, France
    Université de Toulouse, Institut National Polytechnique de Toulouse, Ecole Nationale Vétérinaire de Toulouse, Ecole Nationale Supérieure Agronomique de Toulouse, Institut National de la Recherche Agronomique, TANDEM Tissu Animaux, Nutrition, Digestion, Ecosystème et Métabolisme, UMR1289, 31 326 Castanet Tolosan, France
    Université de Pau et des Pays de l’Adour, IPREM-EMM Institut Pluridisciplinaire de recherche sur l’Environnement et les Matériaux, Equipe Environnement et Microbiologie, UMR5254, 40 004 Mont de Marsan Cedex, France
    Centre de Coopération Internationale en Recherche Agronomique pour le Développement, SELMET Systèmes d’Elevage Méditerranéens et Tropicaux, UR112, 34 398 Montpellier Cedex 5, France
    Institut National de la Recherche Agronomique, PEGASE Physiologie, Environnement et Génétique pour l’Animal et les Systèmes d’Elevage, UMR1348, Agrocampus Ouest, 35000 Rennes, France
    Institut National de la Recherche Agronomique, URA Unité de Recherche Avicole, UR83, 37 380 Nouzilly, France
    Syndicat des Sélectionneurs Avicoles et Aquacoles Français SYSAAF, 37 380 Nouzilly, France
    Institut National de la Recherche Agronomique, GABI Génétique Animale et Biologie Intégrative, UR1313, 78352 Jouy-en-Josas, France
    Institut National de la Recherche Agronomique, UEPFG Unité Expérimentale des Palmipèdes à Foie Gras, UE89, 40 280 Benquet, France


The mule duck, an interspecific hybrid obtained by crossing common duck (Anas platyrhynchos) females with Muscovy (Cairina moschata) drakes, is widely used for fatty liver production. The purpose of the present study was to detect and map single and pleiotropic QTL that segregate in the common duck species, and influence the expression of traits in their overfed mule duck offspring. To this end, we generated a common duck backcross (BC) population by crossing Kaiya and heavy Pekin experimental lines, which differ notably in regard to the BW and overfeeding ability of their mule progeny. The BC females were mated to Muscovy drakes and, on average, 4 male mule ducks hatched per BC female (1600 in total) and were measured for growth, metabolism during growth and the overfeeding period, overfeeding ability, and the quality of their breast meat and fatty liver. The phenotypic value of BC females was estimated for each trait by assigning to each female the mean value of the phenotypes of her offspring. Estimations allowed for variance, which depended on the number of male offspring per BC and the heritability of the trait considered. The genetic map used for QTL detection consisted of 91 microsatellite markers aggregated into 16 linkage groups (LG) covering a total of 778 cM. Twenty-two QTL were found to be significant at the 1% chromosome-wide threshold level using the single-trait detection option of the QTLMap software. Most of the QTL detected were related to the quality of breast meat and fatty liver: QTL for meat pH 20 min post mortem were mapped to LG4 (at the 1% genome-wide significance level), and QTL for meat lipid content and cooking losses were mapped to LG2a. The QTL related to fatty liver weight and liver protein and lipid content were for the most part detected on LG2c and LG9. Multitrait analysis highlighted the pleiotropic effects of QTL in these chromosome regions. Apart from the strong QTL for plasma triglyceride content at the end of the overfeeding period mapped to chromosome Z using single-trait analysis, all metabolic trait QTL were detected with the multitrait approach: the QTL mapped to LG14 and LG21 affected the plasma cholesterol and triglyceride contents, whereas the QTL mapped to LG2a seemed to impact glycemia and the basal plasma corticosterone content. A greater density genetic map will be needed to further fine map the QTL.

  Please view the pdf by using the Full Text (PDF) link under 'View' to the left.

Copyright © 2013. American Society of Animal Science