
J. Bindelle, A. Buldgen, M. Delacollette, J. Wavreille, R. Agneessens, J. P. Destain, and P. Leterme

Several math equations were placed incorrectly and one equation in Table 6 was deleted in the original published article. The corrected text (from pages 586 and 587) and corrected Table 6 are shown below. The journal sincerely regrets the error.

Kinetics of Gas Production. Gas accumulation curves recorded during the 72 h of fermentation were modeled according to France et al. (1993):

\[
G = G_f \left(1 - \exp \left(- \frac{b(t - L)}{c \sqrt{t - L}} \right) \right), \quad \text{if } t \geq L,
\]

where \(G \) denotes the gas accumulation, \(G_f \) (mL·g\(^{-1}\) hydrolyzed residue) denotes the maximum gas volume for \(t = \infty \), and \(L \) (h) denotes the lag time before fermentation starts. The constants \(b \) (h\(^{-1}\)) and \(c \) (h\(^{-1/2}\)) determine the fractional rate of degradation of the substrate \(\mu \) (h\(^{-1}\)), which is postulated to vary with time as follows:

\[
\mu = b + \frac{c}{2\sqrt{t}}, \quad \text{if } t \geq L.
\]

The kinetic characteristics \([G_f, L, \mu_{1 = T/2}]\) (fractional rate of degradation), and \(T/2 \) were compared in the statistical analysis (Figure 1). The syringes that suffered an accidental leakage of gas caused by broken clips were discarded.

Measurement of SCFA Production. The supernatants, prepared as described above, were filtered with a 0.2-µm nylon 13-mm HPLC Syringe Filter (No. 2166, Alltech Associates Inc., Deerfield, IL) and analyzed for SCFA with a Waters 2690 HPLC system (Waters, Milford, MA) fitted with an HFX 87 H column (Bio-Rad, Hercules, CA) at 30°C, with isocaproic acid as the internal standard and 0.01 N H\(_2\)SO\(_4\) as the mobile phase, combined with a Waters 2487 Dual Wavelength Absorbance Detector operating at a wavelength of 210 nm.

Measurement of N Incorporation into Microbial Cells. Total N and \(^{15}\)N enrichment in the freeze-dried pellets were measured by an elemental analyzer coupled to an isotopic-ratio mass spectrometer (Europa Scientific Ltd., Crewe, UK). Bacterial N incorporation (BNI) corresponding to N in the pellet incorporated from the buffer solution into the bacteria, per gram of diet, per gram of incubated hydrolyzed residue, and per gram of actually fermented polysaccharides was calculated from total N and \(^{15}\)N content according to the equations of Bindelle et al. (2007b) and from IVDMD.

The BNI in feces subsequent to fermentation of the fibrous fraction of the diet was estimated as follows:

\[
\text{Fecal bacterial N (g·g}^{-1}\text{)} = \frac{BNI \times 6.25}{(1 - dCP) \times CP},
\]

where \(BNI \) (g·g\(^{-1}\) of DM) denotes the bacterial N incorporation per gram of diet, 6.25 denotes the conversion factor of N into CP, and \(dCP \) denotes the apparent fecal digestibility of the CP (content in the diet).

Statistical Analysis. The syringe was the experimental unit. For the statistical analysis, the syringes were allocated to 2 groups according to the diet used in vivo: the Std, SBP_10, SBP_20, and SBP_30 diets for Exp. 1; and the SBP_20, SBP_10:OH_10, and OH_10 diets for Exp. 2. In Exp. 1, the gas production characteristics, SCFA production, and BNI were analyzed for linear and quadratic effects of the concentration in SBP by means of the MIXED procedure of SAS, using the following regression models:

Linear model: \(Y = \mu + \alpha \cdot S + R_k + \varepsilon, \)

Quadratic model: \(Y = \mu + \alpha \cdot S + \beta \cdot (S)^2 + R_k + \varepsilon, \)

where \(Y \) is the result, \(\mu \) the mean, \(S \) is the continuous effect of the SBP concentration in Exp. 1 (\(S = 0, 10, 20, 30 \)), \(\alpha \) is the linear regression coefficient for \(S \), \(\beta \) is
the quadratic regression coefficient for \((S)^2\), \(R_k\) is the random effect of the fermentation run \((k = 1, 2, 3)\), and \(\varepsilon\) is the error term. The quadratic model was tested first. When the \(P\)-value of the regression coefficient for the quadratic effect of SBP concentration was not significant \((P > 0.05)\), the linear model was used. In Exp. 2, the effect of the amounts of SBP was analyzed by using the same models, where \(S = 0, 10.5, \) or 20.

Table 6. Equations for the prediction of in vivo CP digestibility \((dCP)\) and the urinary-N:fecal-N excretion ratio from in vitro bacterial N incorporation \((BNI, \text{mg}\cdot\text{g}^{-1}\) of diet), fractional rate of degradation \([\mu_t = \frac{T}{2} \text{ (h}^{-1})]\), proportion of butyrate in the short-chain fatty acid molar ratio \((\text{but}, \%)\), and the soluble dietary fiber \((SDF)\) content \((\text{g}\cdot\text{kg}^{-1}\) of DM) of the 6 experimental diets\(^1\)

<table>
<thead>
<tr>
<th>Equation</th>
<th>(r^2) or (R^2)</th>
<th>(P)-value</th>
<th>RMSE(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(dCP = 0.897 - 0.0332 \times BNI)</td>
<td>0.70</td>
<td>0.023</td>
<td>0.011</td>
</tr>
<tr>
<td>(dCP = 0.887 - 0.505 \times \mu_t \times T/2)</td>
<td>0.59</td>
<td>0.047</td>
<td>0.014</td>
</tr>
<tr>
<td>(dCP = 0.861 - 0.000770 \times SDF)</td>
<td>0.72</td>
<td>0.021</td>
<td>0.011</td>
</tr>
<tr>
<td>(dCP = 0.870 - 0.0017 \times BNI + 0.00456 \times \text{but})</td>
<td>0.89</td>
<td>0.017</td>
<td>0.007</td>
</tr>
<tr>
<td>Urinary-N:fecal-N = 2.77 - 0.626 \times BNI</td>
<td>0.65</td>
<td>0.033</td>
<td>0.25</td>
</tr>
<tr>
<td>Urinary-N:fecal-N = 2.62 - 9.90 \times \mu_t \times T/2</td>
<td>0.60</td>
<td>0.043</td>
<td>0.26</td>
</tr>
<tr>
<td>Urinary-N:fecal-N = 2.13 - 0.0154 \times SDF</td>
<td>0.77</td>
<td>0.014</td>
<td>0.20</td>
</tr>
<tr>
<td>Urinary-N:fecal-N = 2.14 - 0.593 \times BNI + 0.106 \times \text{but}</td>
<td>0.94</td>
<td>0.007</td>
<td>0.10</td>
</tr>
</tbody>
</table>

\(^1\)Diets were formulated to contain graded concentrations of sugar beet pulp (SBP), oat hulls (OH), or both at the expense of corn: a standard diet; a 10% SBP diet; a 20% SBP diet, a 30% SBP diet, a 10.5% SBP and 10.5% OH diet, and a 22% OH diet.

\(^2\)RMSE, root mean square error.