Effects of feeding modified distillers grains plus solubles on marbling attributes, proximate composition, and fatty acid profile of beef¹,²

A. S. Mello, Jr.,∥† B. E. Jenschke,∥ L. S. Senaratne,∥ T. P. Carr,∥ G. E. Erickson,∥ and C. R. Calkins∥∥
∥University of Nebraska, Department of Animal Science and ‡Department of Nutrition and Health Sciences, Lincoln 68583-0908

ABSTRACT: Wet distillers grains contain approximately 65% moisture. A partially dried product [modified distillers grains plus solubles (MDGS)] contains about 50% moisture. However, both have similar nutrient composition on a dry matter basis. The objective of this study was to investigate the effects of finishing diets varying in concentration of MDGS on marbling attributes, proximate composition, and fatty acid profile of beef. Yearling steers (n = 268) were randomly allotted to 36 pens, which were assigned randomly to 0, 10, 20, 30, 40 and 50% MDGS (DM basis) and fed for 176 d before harvest. The 48-h postmortem marbling score, marbling texture, and marbling distribution were assessed by a USDA grader and 1 ribeye slice (longissimus thoracis) 7 mm thick was collected from each carcass for proximate and fatty acid analyses. Treatments did not significantly alter marbling score or marbling distribution (P ≥ 0.05). United States Department of Agriculture Choice slices had coarser marbling texture when compared with USDA Select. Although dietary treatment affected marbling texture, no consistent pattern was evident. Diets did not influence fat content, moisture, or ash of the ribeye (P ≥ 0.05). For treatments 0, 10, 30, 40 and 50%, there were positive linear relationships between marbling score and fat percentage in the ribeye (P ≤ 0.05), and all slopes were similar (P = 0.45). Feeding MDGS linearly increased stearic, linoleic, linoleic, linolenic, PUFA, and n-6 fatty acids. As dietary MDGS increased, linear decreases were observed in all n-7 fatty acids and cubic relationships were detected for the 18:1 trans isomers [trans-6-8-octadecenoic acid (6-8t), elaidic acid (9t), trans-10-octadecenoic acid (10t), and trans vaccenic acid (11t)]. No effects were observed for saturated fatty acids containing 6 to 14 carbons. Feeding MDGS resulted in increased PUFA, trans, and n-6 fatty acids, minimal effects on marbling texture, and no effects on the relationship of marbling to intramuscular fat content relationship.

Key words: beef, modified distillers grains, fatty acids, marbling

doi:10.2527/jas2010-3240

INTRODUCTION

Ethanol production in the United States increased from approximately 8 billion L in 2002 to approximately 34 billion L in 2008 (Renewable Fuels Association, 2009). Consequently, a greater supply of distillers byproduct has been available for cattle feeding. During milling, starch is removed from the grain and hydrolyzed to dextrin by an α-amylase enzyme. Dextrin is converted into glucose by glucoamylase sugar, and yeast species such as Saccharomyces cerevisiae convert glucose into ethanol and CO₂ (Davis, 2001). After fermentation, the whole stillage is centrifuged, and coarser particles generate wet distillers grains (WDG) or dried distillers grains (DDG). When drying, the coarser fraction usually passes through a rotary dryer. The remaining liquid fraction is condensed, producing solubles. The solubles may be added back to WDG or DDG to form WDG solubles (WDGS) or DDG solubles (DDGS), respectively (Stock et al., 2000). Modified distillers grains plus solubles (MDGS) are obtained through partial drying until achieving moisture levels of 50 to 54%.

The final concentration of protein and fat are increased in ethanol byproducts (Klopfenstein et al., 2008). Research conducted at the University of Nebraska has shown that feeding WDGS or DDGS com-

¹A contribution of the University of Nebraska Agricultural Research Division.
²This project was funded in part by the Beef Checkoff.
∥Greeley, CO.
∥∥Corresponding author: calcinks1@unl.edu

Received June 10, 2010.
Accepted June 19, 2012.
bined with corn (Zea mays) improves growth, reproduction, carcass traits, and cattle performance (Lodge et al., 1997; Martin et al., 2007; Corrigan et al., 2009). However, little research has been conducted to quantify the effects of feeding MDGS on beef quality. Vander Pol et al. (2009) suggested that some fat in distillers grains may be protected from rumen biohydrogenation, which may increase the concentration of unsaturated fatty acid at the duodenum. These fatty acids may be absorbed and later deposited in the lean. Therefore, for this study, we hypothesized that feeding MDGS could alter the fatty acid profile of beef. The aim of this work was to identify the effects of feeding MDGS on beef fatty acid percentage.

MATERIAL AND METHODS

All procedures related to live animals for this study were approved by the Institutional Animal Care and Use Committee of the University of Nebraska-Lincoln.

Animal, Diets, and Sample Collection

Yearling (n = 268) Angus crossbred steers were randomly allocated to 36 pens, which were assigned randomly to 6 treatments (Table 1) containing high-moisture corn, dry-rolled corn, and different levels of MDGS (0, 10, 20, 30, 40, or 50% MDGS; DM basis). Although animals were fed by pen, the experimental unit in this work was the animal due to sampling conditions at the commercial plant. As levels of MDGS increased across treatments, the ratio of dry-rolled corn to high moisture corn (1:1) decreased. Diets included 7.5% of alfalfa (Medicago sativa) hay and 5% of supplement. Additionally, Rumensin (Elanco Animal Health, Greenfield, IN) at 320 mg, Tylan (Elanco Animal Health) at 30 mg, and thiamine at 150 mg per steer were supplemented daily. Steers were fed for 176 d and implanted at days 1 and 67 with Synovex Choice (Fort Dodge Animal Health, Overland Park, KS) before slaughter and transferred to a commercial abattoir. At 48-h postmortem, marbling attributes (score, texture, and distribution) were evaluated by a USDA beef carcass grading supervisor.

Table 1. Dietary treatment composition (% DM basis)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Treatments, % MDGS1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Dry rolled corn</td>
<td>41.25</td>
</tr>
<tr>
<td>High moisture corn</td>
<td>41.25</td>
</tr>
<tr>
<td>MDGS</td>
<td>0</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>7.5</td>
</tr>
<tr>
<td>Molasses</td>
<td>5</td>
</tr>
<tr>
<td>Mineral and vitamin</td>
<td>5</td>
</tr>
</tbody>
</table>

1MDGS = modified distillers grains plus solubles.

After grading, a 7 mm thick slice of LM was collected at the 12th rib region from each carcass to analyze the fatty acid profile and proximate composition. Ribeye slices were transferred under refrigeration to the University of Nebraska Meat Laboratory, trimmed of subcutaneous fat and connective tissue, vacuum packaged, and stored at –35°C. Before both analyses, samples were pulverized with liquid N (–174°C) using a blender (Waring Commercial, Model 51BL32, Torring, CT) and stored at –80°C until the fatty acid analysis and proximate analysis could be completed.

Proximate and Fatty Acid Analyses

Fatty acid profiles were analyzed according to Folch et al. (1957), Morrison and Smith (1964), and Metcalfe et al. (1966). Fatty acids were isolated from the lipid portion of the lean. One gram of pulverized sample was weighed into a 40-mL conical tube, and 5 mL of 2:1 chloroform:methanol (vol/vol) were added. The sample was homogenized for 5 s and allowed to stand for 1 h at room temperature. The homogenate was filtered through filter paper (Whatman #2) into a 13- by 150-mm screw-cap tube. The final volume was brought to 10 mL with chloroform:methanol and then homogenized for 5 s with 2 mL of 0.74% KCl. Samples were centrifuged at 1,000 × g for 5 min, the top layer phase was aspirated, and tubes were dried under N at 60°C. After drying, samples were homogenized for 5 s with 0.5 mL of 0.5 M NaOH in methanol and heated for 5 min at 100°C. After heating, 0.5 mL of BF3 in 14% methanol was added into the tubes, and the contents were homogenized for 5 s and reheated at 100°C. Samples were homogenized with saturated NaCl solution and 1 mL of hexane for 5 s and centrifuged at 1,000 × g for 5 min. After centrifuging, an aliquot of the top layer containing the fatty acid methyl esters was transferred to vials, which were purged and capped with N before gas chromatography analysis (Hewlett-Packard Gas Chromatograph, Model 6890 series; Agilent Technologies, Santa Clara, CA). Individual fatty acids were separated using a capillary column (Chrompack CP-Sil 88; 0.25 mm by 100 m) and identified through retention time according to known standards (NuChek Prep, Elysian, MN; fatty acid methyl ester standards no. 68D, 79, 87, and 458). Temperature of the oven was set to increase from 140 to 220°C at 2°C/min and held at 220°C for 20 min. Simultaneously, injector and detector temperatures were maintained at 270 and 300°C, respectively, and compounds were carried by He at a flow rate of 1.0 mL/min.

Values of moisture and ash (%) were quantified with a LECO Thermogravimetric Analyzer (Model 604-100-400, LECO Corporation, St. Joseph, MI). Moisture analysis was performed in N atmosphere where the ramp rate was set at 6°C/min, ramp time at 17 min, start temperature...
at 25°C, and end temperature at 130°C. Ash analysis was performed in O2 atmosphere where the ramp rate was set at 20°C/min, ramp time at 30 min, start temperature at 130°C, and end temperature at 600°C. For both moisture and ash analyses, flow rate, hold time, constant weight, and constant weight time were set at high, 0 min, 0.05%, and 9 min, respectively. The crucible density was set at 3 and sample density at 1. Fat content was determined by ether extraction using the Soxhlet procedure (AOAC, 1990). Two grams of powdered samples were weighed out in a filter paper (Whatman #2) envelope, and lipids were extracted using ether as the solvent.

Marbling, fatty acid, and proximate analysis data were analyzed as a complete randomized design in which dietary treatment was the main effect. In this experiment, animal was used as experimental unit. Linear and quadratic relationships were detected by response curves. Linear relationships between marbling and fat content were analyzed using the REG procedure and data were analyzed using the GLIMMIX procedure (SAS Institute, Inc., Cary, NC). When significance (P ≤ 0.05) was indicated by ANOVA, means separations were performed using the LSMEANS and DIFF functions.

RESULTS AND DISCUSSION

Marbling Attributes and Proximate Values

Dietary treatments did not alter marbling score, marbling distribution, fat, or ash (Table 2). A quadratic relationship was detected for moisture content. For marbling texture, there was a significant interaction between dietary treatment and USDA grade (P = 0.02). Carcasses graded USDA Choice had significantly coarser marbling texture than USDA Select carcasses from steers fed 0, 10, 20, 40, and 50% MDGS. Regarding treatments, although a significant interaction was observed, there was no consistent pattern to indicate an optimum level of MDGS for marbling texture. Statistically, the individual P-value of dietary treatment was 0.35 whereas for grade it was <0.01. Therefore, it seems that feeding MDGS had minimal effects on marbling texture due to its individual high P-value. Except for 20% MDGS, all treatments showed significant linear relationships between marbling score and fat content (P ≤ 0.05; Table 3), and the test of common slopes revealed that all of them were similar (0.45; Figure 1). Fat content of ribeyes varied from 7.43 to 8.68%. Considering that beef fat contains 8.5% of trans fat, implications for human health and labeling may be an important issue because increased trans fat per serving may be found.

As described previously, MDGS is very low in starch. When feeding grain, more propionate is produced in the rumen. The propionate can be converted to glucose and is correlated to marbling deposition (Smith and Crouse, 1984). Feedstuffs that are low in starch and contain more fiber are used in the rumen to yield more acetate, which is a precursor for subcutaneous fat deposition (Smith and Crouse, 1984). Modified wet distillers grains plus solubles contain more protein, fat, and fiber.
than does corn (Klopfenstein et al., 2008). Therefore, we would expect significant differences in marbling through feeding MDGS. However, this study showed that levels up to 50% did not alter marbling attributes. Similar results were observed by Larson et al. (1993) and Lodge et al. (1997) when feeding WDG regarding quality grade. Vander Pol et al. (2009) showed that feeding distillers grains stimulated greater propionate production in the rumen than did corn. They attributed this effect to the solubility of 40% of WDGS in diets containing dry rolled corn, high moisture corn, and steam-flaked corn led to higher levels of propionate and a lower acetate:propionate ratio in the rumen when compared with diets with no addition of WDGS. Additionally, Russell (1998) showed that distillers byproducts may change the ruminal pH and influence the acetate:propionate ratio.

Klopfenstein et al. (2008), summarizing different experiments, showed quadratic responses of ADG, G:F, and DMI as levels of WDGS increased in feedlot diets. Likewise, our experiment showed a quadratic relationship for fat content with optimal levels varying from 20 to 40%. Feeding levels above 45% may compromise HCW and ribeye area (Depenbusch et al., 2009). It seems that optimal levels of distillers grains in diets vary from 20 to 40%.

Fatty Acids

Individual fatty acid percentages are presented in Table 4. For 18:1 trans, we did not separate the isomers. Feeding MDGS did not affect percentage of hexanoic (6:0), decanoic (10:0), lauric (12:0), myristic (14:0), iso- stearic (iso 18:0), homogamma linolenic (20:3, n-6), and arachidonic (20:4, n-6) fatty acids.

As levels of MDGS increased, a linear decrease of myristoleic (14:1, n-5), pentadecanoic (15:0), palmitic (16:0), heptadecanoic (17:0), oleic (18:1, n-9), and docosapentaenoic (22:5, n-3) acid was observed (Table 4). A similar pattern was observed in all n-7 fatty acids. By contrast, a linear increase in stearic (18:0), 18:1 trans isomers [trans-6-8-octadecenoic acid (6-8t), elaic acid (9t), trans-10-octadecenoic acid (10t), and trans vaccenic (11t)], linoleic (18:2, n-6), linolenic (18:3, n-3), nonadecanoic (19:0), and eicosanoic (20:0) acid was observed as levels of MDGS increased in the diets. In future studies, the identification of individual 18:1 trans fatty acid isomers may be useful to understand different potential health effects.

Similarly, CLA isomers (trans 7, cis 9-18:2 and cis 9, trans 11-18:2) increased linearly in the muscle as diets contained higher levels of byproduct.

Values of isopalmitic (iso 16:0) acid differed among the treatments ($P < 0.01$), and a quadratic trend was observed as MDGS levels increased ($P = 0.09$). For linoclo- diac (18:2 trans) acid, a quadratic relationship was detected due to a slight decrease of this fatty acid in beef from animals fed 50% MDGS. Although there was no difference among the treatments for CLA 18:2, trans 10, cis 12, a quadratic response in order of the increase of MDGS was observed. Looking at total trans percentage, a cubic relationship was highly significant. However, a quadratic response explained better the responses of total trans fatty acids to MDGS. Cubic relationships were observed for eicosanoic (20:1, n-9) acid and total SFA; however, treatments did not statistically differ in SFA.

As levels of MDGS increased, percentage of PUFA and n-6 fatty acids linearly increased. No effects of dietary treatment were observed in percentage of n-3 fatty acids. Triglycerides are biohydrogenated in the rumen by microbial lipases produced by bacteria releasing the fatty acids (Jenkins, 1993). Likely, the effects of MDGS inclusion in finishing diets on fatty acid percentages in this work are due to the greater amount of fatty acids from this feedstuff that are biohydrogenated in the rumen (Vander Pol et al., 2009). Fatty acids reaching the duodenum originate directly from diets and microbial transformation (Jenkins et al., 2008). After lipid hydrolysis, unsaturated fatty acids are converted to SFA through isomerization forming trans fatty acid intermediates including CLA, which have their double bonds hydrogenated (Harfoot and Hazlewood, 1988). This explains the higher levels of total trans fatty acids in beef from animals fed 30 to 50% MDGS because the conversion of the linoleic at the beginning of the hydrogenation may be increased due to high digestibility of MDGS fat when compared with other fat sources. Additionally, Chin et al. (1992) affirmed that one of the most important CLA sources is lipid from ruminants. However, in this work, very small percentages of CLA were found in the muscle. This might have happened during methylation when the acidic conditions could convert the CLA to trans fatty acids.
ty acids or methoxy artifacts. However, during sample preparation all subcutaneous fat was removed from the sample. Jiang et al. (2010) found CLA in greater percentages in subcutaneous than intramuscular fat; therefore, lower CLA values in samples containing only lean tissue would be expected. As discussed previously, the fat digestibility of this feedstuff is higher than corn, generating linoleic, oleic, and stearic acids. Additionally, Ward et al. (1964) reported that linoleic acid is rapidly hydrogenated in the rumen environment, generating linoleic, oleic, and stearic acids. They reported that 93% of all intermediate linoleic acid is converted to stearic acid and a small accumulation of 18:1 \(\text{trans}\) can be found. In this work, all these 3 fatty acids increased linearly in lean tissue as levels of MDGS increased indicating that this conversion was optimized by feeding higher levels of MDGS. Vander Pol et al. (2009) found higher percentage of total 18:1 \(\text{trans}\), oleic acid, and linoleic acid reaching the duodenum in WDGS fed cattle when compared with corn fed. The absorption of these fatty acids depends of the surface area of bile salt micelles, which may be enhanced by the presence of unsaturated fatty acids (Zinn et al., 2000). This explains the linear increase in PUFA, n-6, and n-6:n-3 ratio as

![Table 4. Weight percentage of fatty acids of ribeye slices (longissimus thoracis) from steers fed modified distillers grains plus solubles (MDGS)](%7B%7B4638%7D%7D)
Table 5. Weight percentage of fatty acid\(^1\) groups of ribeye slices (longissimus thoracis) from steers fed modified distillers grains plus solubles (MDGS)

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Dietary treatments, % MDGS (DM basis)</th>
<th>SEM</th>
<th>P-value</th>
<th>Linear</th>
<th>Quadratic</th>
<th>Cubic</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFA</td>
<td>45.02 45.51 45.33 44.71 44.84 45.63</td>
<td>0.31</td>
<td>0.20</td>
<td>0.68</td>
<td>0.47</td>
<td>0.02</td>
</tr>
<tr>
<td>PUFA</td>
<td>4.08 4.95 5.34 5.34 5.85 6.58</td>
<td>0.18</td>
<td><0.01</td>
<td><0.01</td>
<td>0.46</td>
<td>0.27</td>
</tr>
<tr>
<td>Total</td>
<td>4.49 5.03 6.37 6.73 8.53 7.59</td>
<td>0.30</td>
<td><0.01</td>
<td><0.01</td>
<td>0.03</td>
<td><0.01</td>
</tr>
<tr>
<td>n-3</td>
<td>0.22 0.23 0.22 0.23 0.23 0.23</td>
<td>0.02</td>
<td>0.99</td>
<td>0.90</td>
<td>0.71</td>
<td>0.36</td>
</tr>
<tr>
<td>n-6</td>
<td>3.80 4.65 4.90 5.50 5.72 6.37</td>
<td>0.18</td>
<td><0.01</td>
<td><0.01</td>
<td>0.55</td>
<td>0.28</td>
</tr>
<tr>
<td>n-6:n-3</td>
<td>16.07 19.20 21.08 22.89 23.22 25.03</td>
<td>0.85</td>
<td><0.01</td>
<td><0.01</td>
<td>0.06</td>
<td>0.59</td>
</tr>
</tbody>
</table>

\(^{a-d}\)Means in the same row having different superscripts are significant at \(P \leq 0.05\).

\(^1\)Weight percentage values are relative percentage of all peaks observed by gas chromatography.

\(^2\)Linear, quadratic, and cubic responses to MDGS level.

\(^3\)Total trans fatty acids includes trans-6-8-octadecenoic acid, 6-8t, elaidic acid, 9t, trans-10-octadecenoic acid, 10t, trans vaccenic, 11t, and the 18:2 trans isomers.

levels of MDGS increased in finishing diets (Table 5). Lock et al. (2005) affirmed that the digestibility of fatty acids decreases as chain length and number of double bonds increase. In the present study, a linear decrease of docosapentaenoic acid was observed as MDGS levels increased.

Regarding the n-7 fatty acids, it appears that the higher digestibility of MDGS fat when compared with corn may have altered the biohydrogenation pathways decreasing the ability of the rumen bacteria to reduce these fatty acids. Consequently, the absorption and transportation of these fatty acids from the small intestine to the lean did not occur to the same extent as when animals are corn fed.

Results and trends presented in this study regarding decanoic, lauric, myristic, pentadecanoic, palmitoleic, heptadecanoic, and linoleic acid, CLA 18:2, cis 9, trans 11, total PUFA, and n-6:n-3 ratio are similar to results presented by Depenbusch et al. (2009). Additionally, similar results regarding n-6 and n-6:n-3 were found by Gill et al. (2008) when comparing distillers grains to steam-flaked corn. Apparently, corn-based distillers grains affect the fatty acid profile of beef differently compared with wheat-based distillers grains. Shand et al. (1998) found no effect on fatty acid profile in beef when feeding wheat-based distillers grains and wet brewers grains compared with corn, possibly due to the lower fat concentration of wheat (27%) when compared with corn (47%).

An increase of total \(n\)-6 fatty acids in beef from animals fed higher levels of MDGS was observed in this study. Grundy (1994) and Semma (2002) presented results where \(n\)-6 fatty acids and palmitic acid increased the low density lipoprotein (LDL) cholesterol and decreased the high density lipoprotein cholesterol in human blood. Gould et al. (1998) showed that LDL cholesterol may harm human health through the development of artherosclerosis and subsequent coronary heart disease. However, Wahle et al. (2004) presented a series of studies reporting health benefits of CLA such as anti-cancer, antiatherosclerosis, anti-inflammatory, and anti-obesity properties as well as capacity of enhancing antibody formation. The increase of stearic acid in beef as MDGS increased in the diets does not represent a potential risk for human health because this fatty acid does not or minimally affects total cholesterol (Kris-Etherton et al., 1993; Judd et al., 2002).

Jenschke et al. (2007) showed that there is a negative relationship between beef liver off flavor and levels of cis vaccenic. Therefore, lower levels of this fatty acid may affect beef palatability.

In this study, we observed higher percentage of n-6 fatty acids, and n-6:n-3 ratio in beef from steers fed MDGS when compared with beef from corn-fed cattle. Simopoulos (2002) suggested that increased levels of these fatty acids and elevated ratio may cause cardiovascular disease, cancer, inflammatory, and autoimmune diseases. This could be minimized by greater levels of n-3, but no changes in these fatty acids were observed.

Conclusion

Feeding MDGS increased PUFA, total trans, n-6 fatty acids, n-6:n-3 ratio, and decreased palmitic acid in beef. Although the increase of PUFA may decrease lipid stability in meat, the change in fatty acid profile caused by feeding MDGS does not represent a risk to human health.

LITERATURE CITED

